
Coding Practices 1
ID: 75-BSI | Version: 2 | Date: 3/7/06 5:26:28 PM

Coding Practices

Description
This content area describes methods, techniques, processes, tools, and runtime libraries that can prevent or
limit exploits against vulnerabilities. Each document describes the development and technology context in
which the coding practice is applied, as well as the risk of not following the practice and the type of attacks
that could result.

Overview Articles

Name Version Creation Time Abstract

Coding Practices 8/6/08 4:41:05 PM Most software vulnerabilities are
the result of small but reoccurring
programming errors that could
be easily avoided if programmers
learned to recognize them and
understand their potential harm.
In particular, the C and C++
programming languages have
proved highly susceptible to these
classes of errors. This knowledge
area of the Build Security In web
site describes coding practices that
can be used to mitigate against
these common problems in C and
C++.

Most Recently Updated Articles [Ordered by Last Modified Date]

Name Version Creation Time Abstract

Windows XP SP2 11/14/08 4:57:14 PM Different versions of the Windows
operating systems contain
different implementations of
the heap. The Windows XP
SP2 release has two significant
improvements over earlier heap
implementations that make it more
difficult to exploit.

Strsafe.h 11/14/08 4:56:16 PM Microsoft provides a set of safer
string handling functions for the
C programming language called
Strsafe.h. These functions are
intended to replace their built-in
C/C++ counterparts, as well as any
legacy Microsoft-specific string
handing functions.

Strong Typing 11/14/08 4:55:38 PM One way to provide better type
checking is to provide better
types. Using an unsigned type,
for example, can guarantee that

Coding Practices 2
ID: 75-BSI | Version: 2 | Date: 3/7/06 5:26:28 PM

a variable does not contain a
negative value. However, this
solution does not prevent overflow
or solve the general case.

strncpy_s() and strncat_s() 11/14/08 4:53:37 PM The strncpy() and
strncat() functions
are a source of buffer
overflow vulnerabilities.
The strncpy_s() and
strncat_s() functions are
defined in ISO/IEC TR 24731
as drop-in replacements for
strncpy() and strncat().

strlcpy() and strlcat() 11/14/08 4:52:57 PM The standard C library includes
functions that are designed
to prevent buffer overflows,
particularly strncpy() and
strncat(). These universally
available functions discard data
larger than the specified length,
regardless of whether it fits into
the buffer. These functions are
deprecated for new Windows code
because they are frequently used
incorrectly.

All Articles [Ordered by Title]

Name Version Creation Time Abstract

Arbitrary Precision Arithmetic 11/14/08 4:05:22 PM There are many arbitrary precision
arithmetic packages available,
primarily for scientific computing.
However, arbitrary precision
arithmetic can solve the problem
of integer type range errors
resulting from a lack of precision
in the representation.

C++ std::string 11/14/08 4:07:58 PM C++ programmers have the option
of using the standard std::string
class defined in ISO/IEC 14882.
The std::string generally protects
against buffer overflow.

Coding Practices 8/6/08 4:41:05 PM Most software vulnerabilities are
the result of small but reoccurring
programming errors that could
be easily avoided if programmers
learned to recognize them and
understand their potential harm.
In particular, the C and C++
programming languages have
proved highly susceptible to these

Coding Practices 3
ID: 75-BSI | Version: 2 | Date: 3/7/06 5:26:28 PM

classes of errors. This knowledge
area of the Build Security In web
site describes coding practices that
can be used to mitigate against
these common problems in C and
C++.

Compiler Checks 11/14/08 4:08:48 PM In a perfect world, C and C
++ compilers would identify
the potential for exceptional
conditions to occur at runtime
and provide a mechanism (such
as an exception, trap, or signal
handler) for applications to handle
these events. Unfortunately,
the world we live in is far from
perfect. This article provides a
brief description of some of the
compiler capabilities that exist
today.

Consistent Memory Management
Conventions

11/14/08 4:09:57 PM The most effective way to
prevent memory problems is
to be disciplined in writing
memory management code. The
development team should adopt
a standard approach and apply it
consistently.

Detection and Recovery 11/14/08 4:10:54 PM There are a number of runtime
solutions that can detect stack
corruption and buffer overruns
or guard against attacks. These
solutions typically terminate the
program when an anomaly is
detected, preventing the execution
of arbitrary code.

fgets() and gets_s() 11/14/08 4:41:45 PM The gets() function is a
common source of buffer overflow
vulnerabilities and should never
be used. The fgets() and
gets_s() functions each offer a
more secure solution.

Guard Pages 11/14/08 4:42:22 PM Automatic allocation of additional
inaccessible memory during
memory allocation operations
is a technique for mitigating
against exploitation of heap buffer
overflows. These guard pages are
unmapped pages placed between
all memory allocations of one
page or larger. The guard page
causes a segmentation fault upon
any access.

Coding Practices 4
ID: 75-BSI | Version: 2 | Date: 3/7/06 5:26:28 PM

Heap Integrity Detection 11/14/08 4:42:56 PM This article describes a system
to protect the glibc heap by
making modifications to the
chunk structure and management
functions.

memcpy_s() and memmove_s() 11/14/08 4:43:34 PM Substituting the memcpy_s()
and memmove_s() functions for
the memcpy() and memmove()
 functions can help guard against
software vulnerabilities.

Null Pointers 11/14/08 4:44:15 PM One obvious technique to reduce
vulnerabilities in C and C++
programs is to set the pointer to
null after the call to free() has
completed.

OpenBSD 11/14/08 4:44:48 PM The OpenBSD UNIX variant
was designed with an additional
emphasis on security. In particular,
OpenBSD adopted phkmalloc and
adapted it to support guard pages
and randomization.

OpenBSD's strlcpy() and strlcat() 11/14/08 4:45:41 PM Many UNIX variants provides the
strlcpy() and strlcat()
functions to copy and concatenate
strings in a less error-prone
manner.

Phkmalloc 10/6/08 4:44:00 PM Phkmalloc is an alternative
dynamic memory management
function that was by written by
Poul-Henning Kamp for FreeBSD
in 1995-1996 and subsequently
adapted by a number of operating
systems, including NetBSD,
OpenBSD, and several Linux
distributions.

Randomization 11/14/08 4:47:44 PM Randomization works on the
principle that it is harder to hit
a moving target. Addresses
of memory allocated by
malloc() are fairly predictable.
Randomizing the addresses of
blocks of memory returned by
the memory manager can make it
more difficult to exploit a heap-
based vulnerability.

Range Checking 11/14/08 4:48:25 PM Integer range checking, if
implemented correctly, can
eliminate vulnerabilities resulting
from integer overflow, truncation,
and sign errors.

Coding Practices 5
ID: 75-BSI | Version: 2 | Date: 3/7/06 5:26:28 PM

Runtime Analysis Tools 11/14/08 4:49:02 PM Runtime analysis tools that detect
memory violations are helpful
in eliminating memory-related
defects that can lead to heap-based
vulnerabilities. To be effective,
the tools must be used with a test
suite that evaluates failure modes
as well as planned user scenarios.

Safe Integer Operations 11/14/08 4:49:35 PM Integer operations can result in
error conditions and lost data,
particularly when inputs to these
operations can be manipulated
by a malicious user. A solution
to this problem is to use a safe
integer library for all operations on
integers where one or more of the
inputs could be influenced by an
untrusted source.

SafeStr 11/14/08 4:50:18 PM The C String Library (SafeStr)
from Messier and Viega provides
a rich string-handling library for
C that has secure semantics yet is
interoperable with legacy library
code in a straightforward manner.

strcpy_s() and strcat_s() 11/14/08 4:51:10 PM The strcpy_s() and
strcat_s() functions are
defined in ISO/IEC TR 24731 as a
close replacement for strcpy()
and strcat(). These functions
have an additional argument that
specifies the maximum size of
the destination and also include a
return value that indicates whether
the operation was successful.

strcpy() and strcat() 11/14/08 4:52:13 PM The strcpy() and strcat()
functions have been villainized
as a major source of buffer
overflows, and there are many
mitigation strategies that provide
more secure variants of these
functions. However, not all
applications of strcpy() are
flawed.

strlcpy() and strlcat() 11/14/08 4:52:57 PM The standard C library includes
functions that are designed
to prevent buffer overflows,
particularly strncpy() and
strncat(). These universally
available functions discard data
larger than the specified length,
regardless of whether it fits into

Coding Practices 6
ID: 75-BSI | Version: 2 | Date: 3/7/06 5:26:28 PM

the buffer. These functions are
deprecated for new Windows code
because they are frequently used
incorrectly.

strncpy_s() and strncat_s() 11/14/08 4:53:37 PM The strncpy() and
strncat() functions
are a source of buffer
overflow vulnerabilities.
The strncpy_s() and
strncat_s() functions are
defined in ISO/IEC TR 24731
as drop-in replacements for
strncpy() and strncat().

strncpy() and strncat() 10/6/08 10:41:31 AM The standard C library includes
functions that are designed
to prevent buffer overflows,
particularly strncpy() and
strncat(). These universally
available functions discard data
larger than the specified length,
regardless of whether it fits into
the buffer. These functions are
deprecated for new Windows code
because they are frequently used
incorrectly.

Strong Typing 11/14/08 4:55:38 PM One way to provide better type
checking is to provide better
types. Using an unsigned type,
for example, can guarantee that
a variable does not contain a
negative value. However, this
solution does not prevent overflow
or solve the general case.

Strsafe.h 11/14/08 4:56:16 PM Microsoft provides a set of safer
string handling functions for the
C programming language called
Strsafe.h. These functions are
intended to replace their built-in
C/C++ counterparts, as well as any
legacy Microsoft-specific string
handing functions.

Vstr 7/17/08 4:09:52 PM Vstr is a string library optimized to
work with readv()/writev()
for input/output. For example,
you can readv() data to the
end of the string and writev()
data from the beginning of the
string without allocating or
moving memory. This also allows
the library to work with data
containing multiple zero bytes.

Coding Practices 7
ID: 75-BSI | Version: 2 | Date: 3/7/06 5:26:28 PM

Windows XP SP2 11/14/08 4:57:14 PM Different versions of the Windows
operating systems contain
different implementations of
the heap. The Windows XP
SP2 release has two significant
improvements over earlier heap
implementations that make it more
difficult to exploit.

